Homework

The homework must be written in English. All answers must be clearly justified.

Exercise 1 (1 point) Let A and B be two sets, R and E be two relations on A, and S be a relation on B. Then, let E be the relation on E such that $E(a,b)L_{R,E,S}(a',b')$ iff $E(a,b)L_{R,E,S}(a',b')$

We consider a set \mathcal{F} of function symbols of fixed arity and an infinite set \mathcal{V} of variables. Let \mathcal{T} be the set of terms one can built from \mathcal{F} and \mathcal{V} .

Exercise 2 (1 point) Prove that the rewrite system $f(gx) \to g(f(fx))$ cannot be proved terminating by using a polynomial interpretation on \mathbb{N} .

Let Rel be the set of relations on \mathcal{T} . Let \mathcal{S} be a function on Rel with the following properties:

- (S1) If $\{R_k\}_{k\in K}$ is a totally ordered subset of Rel wrt \subseteq , then $\mathcal{S}(\bigcup_{k\in K} R_k) = \bigcup_{k\in K} \mathcal{S}(R_k)$.
- (S2) If R is a strict order (transitive and irreflexive), then $\mathcal{S}(R)$ is a strict order.
- (S3) If R is stable (by substitution), then S(R) is stable.
- (S4) If tRu then, for all symbols f and terms \vec{a} and \vec{b} , $f\vec{a}t\vec{b}$ $\mathcal{S}(R)$ $f\vec{a}u\vec{b}$.
- (S5) If $t_0 \mathcal{S}(R) t_1 \mathcal{S}(R) \dots$ is an infinite sequence, then there are k and an infinite sequence $u_k R u_{k+1} R \dots$ such that u_k is a strict subterm of t_k .

Exercise 3 (1 point) Prove that S is monotone wrt inclusion.

Exercise 4 (4 points) Assume that the arity of function symbols is bounded. Let $\mathcal{L} : \text{Rel} \to \text{Rel}$ be the function such that, for all $R \in \text{Rel}$, $t \mathcal{L}(R)$ u iff there are f, \vec{t}, g, \vec{u} and i such that $t = f\vec{t}, u = g\vec{u}, t_iRu_i$ and, for all $j < i, t_j = u_j$. Prove that \mathcal{L} satisfies the conditions (S1)-(S5).

A partially ordered set (poset) (X, \leq) is strictly inductive if every non-empty totally ordered subset has a least upper bound in X.

Fixpoint theorem (admitted): In a strictly inductive poset having a smallest element, every monotone function has a least fixpoint.

Induction principle (admitted): Let (A, \leq) be a strictly inductive poset with a smallest element \perp , f be a monotone function on A, a be the least fixpoint of f, and P be a subset of A. Then, $a \in P$ if $f(P) \subseteq P$ and (P, \leq) is a strictly inductive poset with \perp as smallest element.

A quasi-ordering is a relation that is reflexive and transitive. Given a quasi-ordering \succeq , let $\succ = \succeq \setminus \preceq$ be its strict part, and $\simeq = \succeq \cap \preceq$ be its associated equivalence relation. A quasi-ordering \succeq is said to be well-founded if \succ terminates.

Let $\succeq_{\mathcal{F}}$ be a well-founded quasi-ordering on \mathcal{F} .

Let \succeq_1 be the reflexive closure of \succ_1 , and \succ_1 be the smallest relation on \mathcal{T} such that $t \succ_1 u$ iff there are f and \vec{t} such that $t = f\vec{t}$ and either:

- (R1) there is i such that $t_i \succeq_1 u$;
- (R2) there are g and \vec{u} such that $u = g\vec{u}$, $f \succ_{\mathcal{F}} g$ and, for all $i, t \succ_1 u_i$;
- (R3) there are g and \vec{u} such that $u = g\vec{u}$, $f \simeq_{\mathcal{F}} g$, $t\mathcal{S}(\succ_1)u$ and, for all $i, t \succ_1 u_i$.

Note that, when $S = \mathcal{L}$, \succ_1 is the lexicographic path ordering (LPO) \succ_{lpo} .

Exercise 5 (6 points) Prove that \succ_1 is:

- (a) well defined
- (b) well-founded
- (c) irreflexive
- (d) stable (by substitution)
- (e) monotone
- (f) transitive if $tS(\succ_1)uS(\succ_1)v \Rightarrow tS(\succ_1)v$ whenever, for all $(t', u', v')(\lhd, \lhd, \lhd)_{lex}(t, u, v)$, $t' \succ_1 u' \succ_1 v' \Rightarrow t' \succ_1 v'$

Exercise 6 (1 point) Prove that the rewrite system $f(gx) \to g(f(fx))$ cannot be proved terminating by LPO.