Rewriting techniques: Bonus

Exercise 1:

Prove the termination of the following TRS by finding a polynomial interpretation on integers:

$$x \times (y+z) \rightarrow (x \times y) + (x \times z)$$

 $(x+y) + z \rightarrow x + (y+z)$

Exercise 2:

- (a) Find r_1 and r_2 such that $\{f(g(x)) \to r_1, g(h(x)) \to r_2\}$ is confluent.
- (b) Show that the following string rewrite system is convergent

$$\begin{array}{ccc} f \ f \rightarrow f & & f \ g \rightarrow g \\ g \ g \rightarrow f & & g \ f \rightarrow g \end{array}$$

Can you determine the normal form of a term as a function of the numbers of fs and gs in it?

Exercise 3:

In the following, we refer to s, t and w as in the definition of KBO. We will now prove some properties of this order to make the definition of KBO more clear.

- (a) Assume that f is of arity 1, w(f) = 0 and that there is g such that $f \not> g$. Prove that under this conditions $>_{\text{kbo}}$ does not satisfy the subterm property.
 - Prove that, if w is admissible w.r.t. the strict order > then $>_{\text{kbo}}$ on $T(\Sigma, V)$ induced by > and w has the subterm property. To do so, prove the followings:
- (b) Assume that w(s) = w(t) and that t is a strict subterm of s. Prove that there exist a unary function f and a positive integer k such that w(f) = 0 and $s = f^k(t)$;
- (c) Prove that $>_{\text{kbo}}$ is a strict order;
- (d) Prove that $>_{\text{kbo}}$ is a rewrite order;
- (e) Conclude that $>_{kbo}$ has the subterm property.

Exercise 4:

Consider binary positive numbers defined thanks to the following three constructors:

- *h* : pos
- $I: pos \rightarrow pos$
- $O: \mathsf{pos} \to \mathsf{pos}$
- (a) Write a TRS on a typed signature including a binary symbol + computing the addition of two natural numbers in this representation.
- (b) Prove termination and confluence of this TRS.
- (c) Describe closed normal forms of type pos
- (d) Give a model in \mathbb{N} of this TRS such that the function + is indeed represented by addition.
- (e) Let $r: \mathbb{N}^* \to \mathcal{T}$ be the representation of positive integers using the constructors above. Prove the correctness of this TRS: for all positive integers n and m, the normal form of r(n) + r(m) is r(n+m).

Exercise 5:

Encode a non-deterministic turing machine as a TRS.