Rewriting Techniques, 2: termination, interpretation

$$2025 - 09 - 17$$

Exercise 1:

Show that the strict order > defined by

$$s > t$$
 iff $|s| > |t|$ and, for all $x \in FV(t)$, $|s|_x > |t|_x$

is a reduction order, where |s| is the size of s and $|s|_x$ is the number of occurrences of x in s.

A matrix interpretation on integers is the following:

- a positive integer d;
- for every symbol f of arity n, n matrices $M_{f,1} \ldots, M_{f,n} \in \mathbb{N}^{d \times d}$;
- for every symbol of arity n, a vector $V_f \in \mathbb{N}^d$;
- a non-empty set $I \subseteq \{1, \ldots, d\}$ satisfying that for every symbol f of arity n the map

$$L_f: (\mathbb{N}^d)^n \to \mathbb{N}^d$$
 defined as $L_f(X_1, \dots, X_n) = V_f + \sum_{i=1}^n M_{f,i} X_i$

is monotonic with respect to $>_I$ were $X>_I Y$ holds if and only if for every $i\in\{1,\ldots,d\}$, $X[i]\geq Y[i]$ and there is $j\in I$ such that X[j]>Y[j].

Then $(\mathbb{N}^d, (L_f)_f, >_I)$ is a well-founded monotone algebra.

Exercise 2:

Consider the TRS $\{ s(a) \rightarrow s(p(a)), p(b) \rightarrow p(s(b)) \}.$

- 1. Prove that its termination cannot be proved by a polynomial interpretation on integers;
- 2. Use the following matrix interpretation to prove termination w.r.t. $>_{\{1,2\}}$.

$$L_{\mathsf{s}}(X) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} X \qquad L_{\mathsf{p}}(X) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} X \qquad L_{\mathsf{a}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad L_{\mathsf{b}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

3. Why does it fail if we take $>_{\{1\}}$ instead? Is there another matrix interpretation that works with this ordering?

Exercise 3:

Consider exercise on semantic labeling of TD1, where the following rewriting system was defined

$$\begin{array}{l} \mathsf{f}\;(\mathsf{s}\;X)\to\mathsf{f}\;(\mathsf{p}\;(\mathsf{s}\;X))\diamond(\mathsf{s}\;X) \\ \mathsf{p}\;(\mathsf{s}\;(\mathsf{s}\;X))\to\mathsf{s}\;(\mathsf{p}\;(\mathsf{s}\;X)) \end{array}$$

- 1. Prove that RPO cannot prove the termination of the system.
- 2. Prove that a labeled system can be proved terminating with RPO.

Exercise 4:

We consider the Ackermann's function

(a) Prove its termination by induction.

(b) The following rewrite system simulates Ack

$$\begin{aligned} \mathsf{a}(0,y) &\to \mathsf{s}(y) \\ \mathsf{a}(\mathsf{s}(x),0) &\to \mathsf{a}(x,\mathsf{s}(0)) \\ \mathsf{a}(\mathsf{s}(x),\mathsf{s}(y)) &\to \mathsf{a}(x,\mathsf{a}(\mathsf{s}(x),y)) \end{aligned}$$

Prove its termination using a LPO.

(c) Consider the well-founded domain $(\mathsf{Mult}(\mathbb{N} \times \mathbb{N}), (>_{\mathrm{lex}})_{\mathrm{mul}})$. Prove the termination of Ack using the following abstraction:

$$\begin{split} \phi: \ T(\{\mathsf{a},\mathsf{s}\},X) &\to \mathsf{Mult}(\mathbb{N} \times \mathbb{N}) \\ t &\to \{ \mid (|u|,|v|) \mid t|_{p \in \mathrm{Pos}(t)} = \mathsf{a}(u,v) \mid \} \end{split}$$

where $|\mathbf{0}| = 1$, $|\mathbf{a}(x, y)| = |x| + |y| + 1$ and $|\mathbf{s}(x)| = |x| + 1$.

Exercise 5:

Let $A \subseteq \mathbb{N}$ and P_f be respectively the domain and the interpretation, for each function symbol f, of a polynomial interpretation of integers for a TRS (note: the TRS is therefore terminating). Take $a \in A \setminus \{0\}$.

- 1. Define $\pi_a: T(F,X) \to A$ as the function which maps every variable x to a and every term of the form $f(t_1,\ldots,t_n)$ to $\mathsf{P}_f(\pi_a(t_1),\ldots,\pi_a(t_n))$. Prove that $\pi_a(t)$ is greater or equal to the length of every reduction starting from t.
- 2. for every $n \in \mathbb{N}$ and $f \in F_n$, Show that there exists d_f and k_f positive integers such that for every $a_1, \ldots, a_n \in A \setminus \{0\}$, $\mathsf{P}_f(a_1, \ldots, a_n) \leq d_f \prod_{i=1}^n a_i^{k_f}$.
- 3. From the previous point, pick d_f to be also greater or equal than a for all f and fix $c_f \ge k_f + \log_2(d_f)$. For every $t \in T(F,X)$ let $c_t = \max_{f \in F_t} c_f$ where F_t is the finite set of all functions symbols appearing in t, then prove that $\pi_a(t) \le 2^{2^{c_t|t|}}$.

Consider now any finite TRS R and a function symbol f. Prove that there exists an integer k such that if $s \to_R t$ then $|t|_f \le k(|s|_f + 1)$, where $|\cdot|_f$ is the number of f.

Deduce that the TRS

$$\{ a(0,y) \to s(y), a(s(x),0) \to a(x,s(0)), a(s(x),s(y)) \to a(x,a(s(x),y)) \},$$

simulating the Ackermann's function, cannot be proved terminating using a polynomial interpretation over integers.

A weight function for a signature Σ is a pair (w, w_0) consisting of a mapping $w : \Sigma \to \mathbb{N}$ and a constant $w_0 > 0$ such that $w(c) \geq w_0$ for all constant $c \in \Sigma$. Let (w, w_0) be a weight function. The weight of a term t is defined as follows

$$w(t) = \begin{cases} w_0 & \text{if } t \text{ is a variable} \\ w(f) + \sum_{i=1}^n w(t_i) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

We denote $|s|_x$ for x a variable the number of times that x occurs in s. Let > be a precedence and (w, w_0) a weight function. We define the *Knuth-Bendix order* (KBO) $>_{\text{kbo}}$ on terms inductively as follows: $s>_{\text{kbo}} t$ if $|s|_x \ge |t|_x$ for all variables x and either

- 1. w(s) > w(t), or
- 2. w(s) = w(t) and one of the following alternatives holds
 - (a) t is a variable and $s = f^n(t)$ for some unary function symbol f and n > 0,
 - (b) $s = f(s_1, ..., s_n), t = f(t_1, ..., t_n)$ and there is $i \in \{1, ..., n\}$ such that $s_j = t_j$ for all $1 \le j < i$ and $s_i >_{\text{kbo}} t_i$, or
 - (c) $s = f(s_1, ..., s_n), t = g(t_1, ..., t_m)$ and f > g.

Exercise 6:

Using a KBO, prove the termination of:

- 1. $\{I(x) + (y+z) \to x + (I(I(y)) + z), I(x) + (y+(z+w)) \to x + (z+(y+w))\}$
- 2. $\{ \mathsf{r}^n(\mathsf{I}^k(x)) \to \mathsf{I}^k(\mathsf{r}^m(x)) \}$, where n, k > 0 and $m \ge 0$.